1,492 research outputs found

    Look before you Hop: Conversational Question Answering over Knowledge Graphs Using Judicious Context Expansion

    No full text
    Fact-centric information needs are rarely one-shot; users typically ask follow-up questions to explore a topic. In such a conversational setting, the user's inputs are often incomplete, with entities or predicates left out, and ungrammatical phrases. This poses a huge challenge to question answering (QA) systems that typically rely on cues in full-fledged interrogative sentences. As a solution, we develop CONVEX: an unsupervised method that can answer incomplete questions over a knowledge graph (KG) by maintaining conversation context using entities and predicates seen so far and automatically inferring missing or ambiguous pieces for follow-up questions. The core of our method is a graph exploration algorithm that judiciously expands a frontier to find candidate answers for the current question. To evaluate CONVEX, we release ConvQuestions, a crowdsourced benchmark with 11,200 distinct conversations from five different domains. We show that CONVEX: (i) adds conversational support to any stand-alone QA system, and (ii) outperforms state-of-the-art baselines and question completion strategies

    Electronic Portfolios for Scientists

    Get PDF
    Electronic portfolios (ePortfolios) are electronic versions of paper based portfolios. They are increasingly applied in education. Software for building and maintaining ePortfolios is emerging; open specifications for the exchange of ePortfolios exist. They show the potential to serve as a standard tool for documenting achievements in lifelong learning. In this paper we explore the potential of ePortfolios for scientists

    Bragg Polaritons: Strong Coupling and Amplification in an Unfolded Microcavity

    Full text link
    Periodic incorporation of quantum wells inside a one--dimensional Bragg structure is shown to enhance coherent coupling of excitons to the electromagnetic Bloch waves. We demonstrate strong coupling of quantum well excitons to photonic crystal Bragg modes at the edge of the photonic bandgap, which gives rise to mixed Bragg polariton eigenstates. The resulting Bragg polariton branches are in good agreement with the theory and allow demonstration of Bragg polariton parametric amplification.Comment: 4 pages, 4 figure

    The End of ‘Learning from the West’? Trends in China’s Contemporary Science Policy

    Get PDF

    Taxation

    Get PDF

    Kinetic phase diagram for CO oxidation on Pt(210): Pattern formation in the hysteresis and oscillation regions

    Get PDF
    The reactive behavior of catalytic CO oxidation on Pt(210) is studied by means of combined reaction rate measurements and photoelectron emission microscopy (PEEM). These methods allow an investigation of the phenomena at macroscopic and mesoscopic level, respectively. The external control parameters (flow rate, CO and oxygen partial pressures, surface temperature and scanning rates of pressure and temperature) are systematically varied to reveal various reactive regions in parameter space. The macroscopic measurements for a given temperature and flow rate (under isothermal conditions) show that lower pressures lead to a pronounced clockwise hysteresis in the production rate of CO2, while increasing pressures cause a systematic narrowing leading to a crossing of the two hysteresis branches into a region of counterclockwise hysteresis. A further pressure increase leads to macroscopic temporal oscillations. Mesoscopic spatiotemporal oscillations appear at the same conditions. The resulting macroscopic isothermal kinetic phase diagram exhibits a cross-shaped characteristic similar to that previously obtained for the Pd(110) surface. The mesoscopic lateral distribution of CO and oxygen adsorbed on the surface is monitored with the photoelectron emission microscope during the reaction at isothermal conditions and different constant oxygen pressures. The observed mesoscopic spatiotemporal patterns, such as islands, waves, target patterns and spirals, are correlated via the external control parameters with different regions in the macroscopic isothermal phase diagram. The results are compared with previous data of CO oxidation on other surfaces, like Pd(110) and Pt(110)

    Decay of metastable phases in a model for the catalytic oxidation of CO

    Full text link
    We study by kinetic Monte Carlo simulations the dynamic behavior of a Ziff-Gulari-Barshad model with CO desorption for the reaction CO + O \to CO2_2 on a catalytic surface. Finite-size scaling analysis of the fluctuations and the fourth-order order-parameter cumulant show that below a critical CO desorption rate, the model exhibits a nonequilibrium first-order phase transition between low and high CO coverage phases. We calculate several points on the coexistence curve. We also measure the metastable lifetimes associated with the transition from the low CO coverage phase to the high CO coverage phase, and {\it vice versa}. Our results indicate that the transition process follows a mechanism very similar to the decay of metastable phases associated with {\it equilibrium} first-order phase transitions and can be described by the classic Kolmogorov-Johnson-Mehl-Avrami theory of phase transformation by nucleation and growth. In the present case, the desorption parameter plays the role of temperature, and the distance to the coexistence curve plays the role of an external field or supersaturation. We identify two distinct regimes, depending on whether the system is far from or close to the coexistence curve, in which the statistical properties and the system-size dependence of the lifetimes are different, corresponding to multidroplet or single-droplet decay, respectively. The crossover between the two regimes approaches the coexistence curve logarithmically with system size, analogous to the behavior of the crossover between multidroplet and single-droplet metastable decay near an equilibrium first-order phase transition.Comment: 27 pages, 22 figures, accepted by Physical Review

    Children of prisoners: exploring the impact of families' reappraisal of the role and status of the imprisoned parent on children's coping strategies

    Get PDF
    Qualitative data from a larger study on the impact of parental imprisonment in four countries found that children of prisoners face fundamentally similar psychological and social challenges. The ways that children cope, however, are influenced by the interpretative frame adopted by the adults around them, and by how issues of parental imprisonment are talked about in their families. This article argues that families have to reappraise their view of the imprisoned parent and then decide on their policy for how to deal with this publicly. Their approach may be based on openness and honesty or may emphasise privacy and secrecy, or a combination of these. Children are likely to be influenced by their parents'/carers' views, although these may cause conflict for them. Where parents/carers retain a positive view of the imprisoned parent, children are likely to benefit; where parents/carers feel issues of shame and stigma acutely, this is likely to be transmitted to their children. This is important for social workers and practitioners involved in supporting prisoners' families and for parenting programmes

    Macroscopic and mesoscopic characterization of a bistable reaction system: CO oxidation on Pt(111) surface

    Get PDF
    The catalytic oxidation of CO by oxygen on a platinum (111) single-crystal surface in a gas-flow reactor follows the Langmuir–Hinshelwood reaction mechanism. It exhibits two macroscopic stable steady states (low reactivity: CO-covered surface; high reactivity: O-covered surface), as determined by mass spectrometry. Unlike other Pt and Pd surface orientations no temporal and spatiotemporal oscillations are formed. Accordingly, CO+O/Pt(111) can be considered as one of the least complicated heterogeneous reaction systems. We measured both the macroscopic and mesoscopic reaction behavior by mass spectrometry and photoelectron emission microscopy (PEEM), respectively, and explored especially the region of the phase transition between low and high reactivity. We followed the rate-dependent width of an observed hysteresis in the reactivity and the kinetics of nucleation and growth of individual oxygen and CO islands using the PEEM technique. We were able to adjust conditions of the external control parameters which totally inhibited the motion of the reaction/diffusion front. By systematic variation of these conditions we could pinpoint a whole region of external control parameters in which the reaction/diffusion front does not move. Parallel model calculations suggest that the front is actually pinned by surface defects. In summary, our experiments and simulation reveal the existence of an “experimental” bistable region inside the “computed” bistable region of the reactivity diagram (S-shaped curve) leading to a novel dollar ($)-shaped curve

    Energetics and Vibrational States for Hydrogen on Pt(111)

    Get PDF
    We present a combination of theoretical calculations and experiments for the low-lying vibrational excitations of H and D atoms adsorbed on the Pt(111) surface. The vibrational band states are calculated based on the full three-dimensional adiabatic potential energy surface obtained from first principles calculations. For coverages less than three quarters of a monolayer, the observed experimental high-resolution electron peaks at 31 and 68meV are in excellent agreement with the theoretical transitions between selected bands. Our results convincingly demonstrate the need to go beyond the local harmonic oscillator picture to understand the dynamics of this system.Comment: In press at Phys. Rev. Lett - to appear in April 200
    corecore